3.18.40 \(\int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^6} \, dx\)

Optimal. Leaf size=146 \[ -\frac {b^2 \sqrt {a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^3}+\frac {b \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}{2 e^3 (a+b x) (d+e x)^4}-\frac {\sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^2}{5 e^3 (a+b x) (d+e x)^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {770, 21, 43} \begin {gather*} -\frac {b^2 \sqrt {a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^3}+\frac {b \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}{2 e^3 (a+b x) (d+e x)^4}-\frac {\sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^2}{5 e^3 (a+b x) (d+e x)^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^6,x]

[Out]

-((b*d - a*e)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^3*(a + b*x)*(d + e*x)^5) + (b*(b*d - a*e)*Sqrt[a^2 + 2*a*b
*x + b^2*x^2])/(2*e^3*(a + b*x)*(d + e*x)^4) - (b^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)*(d + e*x)^
3)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^6} \, dx &=\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {(a+b x) \left (a b+b^2 x\right )}{(d+e x)^6} \, dx}{a b+b^2 x}\\ &=\frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \frac {(a+b x)^2}{(d+e x)^6} \, dx}{a b+b^2 x}\\ &=\frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac {(-b d+a e)^2}{e^2 (d+e x)^6}-\frac {2 b (b d-a e)}{e^2 (d+e x)^5}+\frac {b^2}{e^2 (d+e x)^4}\right ) \, dx}{a b+b^2 x}\\ &=-\frac {(b d-a e)^2 \sqrt {a^2+2 a b x+b^2 x^2}}{5 e^3 (a+b x) (d+e x)^5}+\frac {b (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}{2 e^3 (a+b x) (d+e x)^4}-\frac {b^2 \sqrt {a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 73, normalized size = 0.50 \begin {gather*} -\frac {\sqrt {(a+b x)^2} \left (6 a^2 e^2+3 a b e (d+5 e x)+b^2 \left (d^2+5 d e x+10 e^2 x^2\right )\right )}{30 e^3 (a+b x) (d+e x)^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^6,x]

[Out]

-1/30*(Sqrt[(a + b*x)^2]*(6*a^2*e^2 + 3*a*b*e*(d + 5*e*x) + b^2*(d^2 + 5*d*e*x + 10*e^2*x^2)))/(e^3*(a + b*x)*
(d + e*x)^5)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.15, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[((a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^6,x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 109, normalized size = 0.75 \begin {gather*} -\frac {10 \, b^{2} e^{2} x^{2} + b^{2} d^{2} + 3 \, a b d e + 6 \, a^{2} e^{2} + 5 \, {\left (b^{2} d e + 3 \, a b e^{2}\right )} x}{30 \, {\left (e^{8} x^{5} + 5 \, d e^{7} x^{4} + 10 \, d^{2} e^{6} x^{3} + 10 \, d^{3} e^{5} x^{2} + 5 \, d^{4} e^{4} x + d^{5} e^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^6,x, algorithm="fricas")

[Out]

-1/30*(10*b^2*e^2*x^2 + b^2*d^2 + 3*a*b*d*e + 6*a^2*e^2 + 5*(b^2*d*e + 3*a*b*e^2)*x)/(e^8*x^5 + 5*d*e^7*x^4 +
10*d^2*e^6*x^3 + 10*d^3*e^5*x^2 + 5*d^4*e^4*x + d^5*e^3)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 96, normalized size = 0.66 \begin {gather*} -\frac {{\left (10 \, b^{2} x^{2} e^{2} \mathrm {sgn}\left (b x + a\right ) + 5 \, b^{2} d x e \mathrm {sgn}\left (b x + a\right ) + b^{2} d^{2} \mathrm {sgn}\left (b x + a\right ) + 15 \, a b x e^{2} \mathrm {sgn}\left (b x + a\right ) + 3 \, a b d e \mathrm {sgn}\left (b x + a\right ) + 6 \, a^{2} e^{2} \mathrm {sgn}\left (b x + a\right )\right )} e^{\left (-3\right )}}{30 \, {\left (x e + d\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^6,x, algorithm="giac")

[Out]

-1/30*(10*b^2*x^2*e^2*sgn(b*x + a) + 5*b^2*d*x*e*sgn(b*x + a) + b^2*d^2*sgn(b*x + a) + 15*a*b*x*e^2*sgn(b*x +
a) + 3*a*b*d*e*sgn(b*x + a) + 6*a^2*e^2*sgn(b*x + a))*e^(-3)/(x*e + d)^5

________________________________________________________________________________________

maple [A]  time = 0.04, size = 78, normalized size = 0.53 \begin {gather*} -\frac {\left (10 b^{2} e^{2} x^{2}+15 a b \,e^{2} x +5 b^{2} d e x +6 a^{2} e^{2}+3 a b d e +b^{2} d^{2}\right ) \sqrt {\left (b x +a \right )^{2}}}{30 \left (e x +d \right )^{5} \left (b x +a \right ) e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^6,x)

[Out]

-1/30/e^3*(10*b^2*e^2*x^2+15*a*b*e^2*x+5*b^2*d*e*x+6*a^2*e^2+3*a*b*d*e+b^2*d^2)*((b*x+a)^2)^(1/2)/(e*x+d)^5/(b
*x+a)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^6,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for
 more details)Is a*e-b*d zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 2.12, size = 77, normalized size = 0.53 \begin {gather*} -\frac {\sqrt {{\left (a+b\,x\right )}^2}\,\left (6\,a^2\,e^2+3\,a\,b\,d\,e+15\,a\,b\,e^2\,x+b^2\,d^2+5\,b^2\,d\,e\,x+10\,b^2\,e^2\,x^2\right )}{30\,e^3\,\left (a+b\,x\right )\,{\left (d+e\,x\right )}^5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((a + b*x)^2)^(1/2)*(a + b*x))/(d + e*x)^6,x)

[Out]

-(((a + b*x)^2)^(1/2)*(6*a^2*e^2 + b^2*d^2 + 10*b^2*e^2*x^2 + 15*a*b*e^2*x + 5*b^2*d*e*x + 3*a*b*d*e))/(30*e^3
*(a + b*x)*(d + e*x)^5)

________________________________________________________________________________________

sympy [A]  time = 1.02, size = 116, normalized size = 0.79 \begin {gather*} \frac {- 6 a^{2} e^{2} - 3 a b d e - b^{2} d^{2} - 10 b^{2} e^{2} x^{2} + x \left (- 15 a b e^{2} - 5 b^{2} d e\right )}{30 d^{5} e^{3} + 150 d^{4} e^{4} x + 300 d^{3} e^{5} x^{2} + 300 d^{2} e^{6} x^{3} + 150 d e^{7} x^{4} + 30 e^{8} x^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*((b*x+a)**2)**(1/2)/(e*x+d)**6,x)

[Out]

(-6*a**2*e**2 - 3*a*b*d*e - b**2*d**2 - 10*b**2*e**2*x**2 + x*(-15*a*b*e**2 - 5*b**2*d*e))/(30*d**5*e**3 + 150
*d**4*e**4*x + 300*d**3*e**5*x**2 + 300*d**2*e**6*x**3 + 150*d*e**7*x**4 + 30*e**8*x**5)

________________________________________________________________________________________